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Abstract 

Superluminal concepts since 1962 have continued to gain momentum for numerous 
discussions. The so-caUed (yet unconfirmed) tachyons have been basically dealt in the 
literature with a second-order field equation, leaving aside a probable exploitation 
through a simpler first-order mechanism. Initiating this (first-order field) approach we 
show that the Dirac invariance under joint reversal symmetries of the mass and four- 
momentum leads to a (generalised) Lorentz symmetry. This yields solutions of a faster- 
than-light particle of definite negative mass (referred to here as 'bisiston') with possibly 
annihilating and other features. How can the 'minus' sign in the mass, -m,  be inter- 
preted? It seems, it corresponds to a mass-repulsion process leading to a very probable 
form of the (missing) +- symmetry in the mass (i.e. gravitational) interaction (comparable 
to the universal V ~- A result). This argument appears to be extremely plausible in con- 
text of our wide universe where such a symmetry cannot be ruled out in the large. 

1. Introduction 

For many years symmetry principles have played a fundamental  role in 
developing new physical ideas. Heat usually flows from hot to cold regions, 
but  the symmetrical aspect provides for its direction to be reversed. In fact, 
we have built  sophisticated mechanisms (such as refrigerators) where heat 
appears to flow from cooler to warmer bodies. Similarly, the not ion  of 
symmetry in time (i.e., time-reversal) has contributed greatly to developments 
of the propagator's approach (e.g., Feynman, 1962). And the proposition of 
the hole theory (Dirac, t930) gives rise to a reatisable symmetry for particles 
and anti-particles in nature. Likewise, the positive and negative characters of 
electrical charges and magnetic poles conform superbly to symmetrical con- 
cepts corresponding to attractive and repulsive features for the electromagnetic 
interaction. The strong interaction as well follows a similar trend, e.g., both 
the features of attraction and (hard-core) repulsion in nuclei are known. One 
may now ask why such symmetrical features should lack in the mass (gravita- 
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tional) interaction, GI. We may go further and add whether i t  is possible to 
develop some complex ideas which would permit  us to include bo th  the 
attractive and repulsive features for the G x (gravitational interaction).  Plainly 
speaking, it would mean that  the product  o f  two interacting masses (characteris- 
ing the gravitational force in between) need to be symmetric,* i.e. +re and 
- r e  both.  In order to be so, at least any o f  the two masses must be o f  opposite 
sign to each other. Is there anything in principle forbidding this condit ion? 
Certainly not,  i f  the Dirac theory can provide conditions to conform to this 
aspect. In fact, the mass-reversal 0.e. ,  m -+ - m )  invariance o f  the Dirac 
equation has been shown by  Sakurai (1958) (see also Roman's tex tbook,  
1960) to lead to a universal V-+ A in te rac t ion -a  result which is also obtained 
by  Sudershan & Marshak (1958) from a chirality transformation. However, 
nowhere in Sakurai 's formalism in explicit  use made o f  m -+ - m  (Roman,  
1960), so that further probable implications, such as the + G,r, possibly 
become suppressed. 

It is the purpose o f  this paper to make an a t tempt  to understand this 
point  by  pursuing the invariance o f  the Dirac equation under jo int  reversals 
of  the four-momentum and mass o f  a particle, e.g., the electron o f  mass m 
and charge 'e ' .  We find that  the Dirac-invariant conditions in our formalism 
give the Lorentz-invariance symmetry.  This leads to solutions o f  a faster- 
than4ight particle o f  charge e and mass m' = - m  with properties ye t  to be 
observed or discovered. For  example, a m'-particle is l ikely to interact  with 
its pair-electron via two distinct processes, annihilation and mass (gravita- 
t ional) repulsion, as we shall now see.t  Hereafter, for the sake of  convenience, 
we shall refer to a negative-mass-in-effect (m' = - m )  particle as 'bisiston' .* 

2. T h e o r e t i c a l  F o r m u l a t i o n ,  R e s u l t s  a n d  D i s c u s s i o n s  

We start with the familiar Dirac equation for the electron in the Feynman 
slash nota t ion (see Bjorken & Drell, 1964) as follows: 

( g -  e e t -  m)~  t° = 0 (co = 1, 2, 3, 4) (2.1) 

* Ordinaxily, the glavitationat force between masses m' and rn is given by (Gm'm/R2) ,  
where G is the gravitational constant and the distance-squared quantity R 2 is always 
+re. The sign of the product (m 'm) ,  therefore, characterises the field. In notation, where 
a +ve sign corresponds to the mass-attraction, a - r e  sign would mean the mass-repulsion. 
The ± symmetry in G/refers to this aspect. 

1" Throughout, we use schemes of notations given in the text of Bjorken & Drell 
(1964): g = c = 1 ; the contravariant four-vector such as the space-time coordinates 
xV(~  - (x ° ,  x 1, x 2, x 3 ) -~ (t, x,  y ,  z)  is related to its eovariant quantity Xu(=-- (t, - x  i) 
=- (t, - x  i ,  - x 2 ,  - x 3 ) )  as x# = g#ux v with g#v = 0 (# 4= v), goo = -g i i  = 1 (i  = 1, 2,  3),  
xux~Z = t 2 _ xi2,  g#V = g#v, (g#v) 2 = I, a unit 4 x 4 matrix. Notice that non-vanishing 
dements o f  guy can be +-t, and ( - g u y )  2 = L 

z~ From a Sanskrit word meaning a particle of exclusively distinct character. We might 
also call it a 'negative (mass) taehyon'. Instead of a second-order field equation as used 
for tachyons (Dhar & Sudarshan, 1968) we initiate a first-order approach in this paper. 
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with g=  7Up~z = i ~, V~ = (a/~x ~) (/a = O, 1,2, 3); 7 ° =/3, 3 ,i =/3% (i = 1, 2, 3); 
~¢ = 7UAu, Au = guvA v, pU = g~Vpv (v = 0, 1, 2, 3); and p2 = pUpu = E 2 _ pi 2 
= rn 2. In the above, E, p, A, refer to the total energy, four-momentum, and 
electromagnetic four-potential, respectively; ~ and ~i are the usual Dirac 
4 x 4 matrices; and ~ is a 4-component wave function with large (co = 1, 2) 
and small (co = 3, 4) components corresponding to the positive and negative 
energy, respectively. (i is an imaginary unit.) Clearly, the (Dirac) equation 
(2.1) is invariant under the following operations: 

(I) Multiply (2.1) from the left with a non-singular 4 x 4 matrix, D, as 

D = 7SDoDo, (D O = ' ~ 1 ' ~ 2 V 3  , 75 =i703A7273 = 7S) (2.2) 

(II) and simultaneously reverse the four-momentum and mass viat 
guy ~ -guy,  i.e., 

t ! 

Pu -+ -Pu ,  m -~ - m  , guy -~ -guy  

implying further (2.3) 
t A u -~ - A . ,  pU(= gUVpv ) _~ + p'U 

(Here it is easy to misunderstand these steps to be trivial, but deeper insight 
is required to exploit their real significance, as we shall soon see. Note also 
that to lowest order D is just equal to 7 s, and higher orders of D are of no 
importance.) From the usual anti-commutator relations of 7-matrices 
(Bjorken & Drell, 1964) we verify the following: 

Din' - m'D = O, D7 u + 7UD = 0 (2.4) 

D Q + Q D = O  (Q =/r, e t ,$)  (2.5) 

D~W = if,x, X(= 1,2, 3, 4) -+ co(= 3, 4, I, 2) (2.6) 

( l£  - c a '  + m') ~,x = 0 (2.7) 

This invafiance, obtained through equations (2.2) and (2.3), amounts to say- 
ing that equation (2.7) is just as good for the m' (= -rn)-particle (bisiston) 
as is the original Dirac equation for the m-electron, and the two solutions 
~o  and ff,x are related to each other by the simple interchange of positive- 
and negative-energy components where the spin (Si) does not reverse (as it 
does for the positron case) but the polafisation (Su) does. To see this, let the 
spin-up negative-energy electron have the solution ~3 = (270-3/2 exp 
(imt) {0 0 1 0) (Bjorken, 1964) where the column matrix denoted 
by ( ) is expanded fully in the following equation. The corresponding 
solution for the bisiston is then given from above as 

J" This step automatically yields the four-momentum reversal as well as the Lorentz- 
invariance symmetry. Otherwise, no significant physics is likely to come out. For a 
Lorentz-invariance (space-time) symmetry, see other works, e.g., Recami & Mignani, 
1972. 
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ff,x = 3,SDoDoff3 = (2~r)- 3/2 exp (- im' t )  0 0 1 0 

0 0 0 1 
1 0 

=(2rr) -3/2 exp( - im ' t ) (1  0 0 0) = ~ ' l ( r n ' = - r n )  

(2.8) 

(2.9) 

In general, using the energy- and spin-projection operators (Bjorken et al., 
1964) as ((e/~+ m)/2m) and ((1 + 7s $)/2), respectively, with e = -+ 1, 
$ = 7uSu, SuS u = -1 ,  S u = (0, Si), S"pu = 0, we apply the same trans- 
formation (2.6) to an arbitrary spin-momentum eigenstate to obtain 

~,x = D~O~ = [TSDoDo ((eta+ m)/2m) ((1 + "/s$)[2)1 qjo~ 

= ((+ e k + m')/2m') ((1 - 7s ~')/2)~ 'x (2.10) 

That is, similar to the case of positrons, equation (2.6) projects a negative-energy 
eigenstate of any spin-momentum into a positive-energy eigenstate of the same 
spin-momentum. The sign change in polarisation S u is just as formal as ever 
in such cases indicating that the ~1 eigenvalues of  the negative-energy 
electron's eigenfunctions cr 3 (z-component of the Pauli spin 2 x 2 matrix) 
correspond to the +1 with respect to the positive-energy bisiston. 

Because of the magnetic moment dependence on 'elm', we see that such 
a moment for the bisiston (m' = - m )  is exactly identical with that of  the 
positron (with its charge ep = -e ) ,  and satisfies the anti-particle criterion 
with respect to an electron. In addition, the m' and m system is gravitation- 
ally repulsive (-ve sign) as opposed to the attraction (+re sign) between 
masses m and m. This, however, leads to +Gz (gravitational-interaction) 
symmetry more or less similar, and/or equivalent, to the universal (V-+ A) 
interaction result of Sakurai (1958) and Roman (1960), although our 
approach here is quite different from theirs. Thus we have ~ and ~'  describ- 
ing the two identical physical inertial systems corresponding to N and N',  
respectively. Each is a complete world in itself containing exclusively, as 
experience shows, those particles which attract one another gravitationally. 
The knowledge as to which of the worlds (N or N') we belong is, o f  course, 
immaterial or irrelevant. The important aspect now consists of determining 
the relative behaviour of N with respect to N'  through the use of trans- 
formation (2.3). We must recourse to two guide lines: (1) The mass m must 
be a rest-mass in N, while m' must be at rest with respect to N'. This ensures 
the validity of equations (2.1) and (2.7) individually in the respective systems. 
Up to this point the sign of mass does not matter at all (see also, Roman, 
1960). (2) The invafiance requirement given mainly by equation (2.3) must 
be understood in terms of  physical implications. We can also exploit the 
physical meaning of m' = - m  from special relativity, since the two masses 
here are not identically equal. The point we know precisely from the Einstein 
theory is that two identically equal masses must be at rest with respect to 
each other. 
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• _ _ ) .  l Since p ,  -pu ,  and pU + + p,U in equation (2.3), the energy-momentum 

relations for the inertial systems N and N' are given as 

(pZ =) pUpu _> _p,Up,u, E 2 _ pi2 = _ (E,R _ p~2) (2.11) 

The physical meaning is now more dear. The transformation (2.3) transforms 
two-sheeted hyperboloids p2 > 0 into single-sheeted hyperboloids p2 < 0 
implying that a m'-particte belonging to N' is super lumina l  with respect to 
an m-electron of the N-system. (For details regarding superluminal (faster- 
than.fight) transformations and particles, the so-called tachyons, see papers 
by a host of authors such as Bflaniuk & Sudarshan e t  al. (1962), Feinberg 
(1967), Parker (1969), Antippa (1972), Recami e t  al. (1972), Sinha (1973), 
and others• In particular, Mignani & Recami (1973) contains a good biblio- 
graphy on tachyons.) Similarly, in the homogeneous four-coordinate space- 
time with isotropy of 3-component (i) equations (2.3) and (2.11) reduce to 

'~ ' t 2 ( t ,2  '2 X # X #  ~ - - X  Xl~ , X i  2 _ = _  - - X  i ) (2.12) 

which means that space(time)dike intervals belonging to N become time- 
(space)-like intervals with respect to N'. Here it is comforting to note that 
such a result, which always constitutes an axiomatic assumption in the 
tachyon theory (see above-mentioned references), comes directly from cow 
ditions (2.2) and (2.3) required in our formalism for the invariancy of the 
Dirac equation. To see things in a more familiar form, from now on we write 
results in explicit units of c, the velocity of light in vacuum. The relation 
(2.12) with t ( t ' )  -> c t (c t ' )  gives coordinates transformation as 

x '  1 = r ( x  1 - v t ) ,  t '  = r ( t  - ( v x l / c2 ) ) ,  x '  2 = + i x 2 ,  x '  3 = +- i x  a ] 

with 1 
r=+_ [(v2/c2)- 11-1/2 =+i[1 -(v21e2)] -1/2 =-+ [11 - ( v 2 1 c 2 ) 1 ] - 1 / 2  ) 

(v > c) (2.13) 

which are identical with the 'generalised Lorentz transformation (GLT)' 
(Parker, 1969; Antippa, 1972; Mignani & Recami, 1973) for superluminat 
(inertial) systems moving with relative velocity of magnitude v > c. This 
identity simply means that the two systems in question, N and N', are indeed 
supefluminal to each other with v ;> c, provided the condition m' --> - m  is 
also consistently satisfied. To see this, let us write, from equation (2.13), a 
general form of the standard mass-velocity relation for v > c as 

m'l = m / r  = +- ira[1 - (v2/c2)1 - I/2 (2.14) 

which agrees with the tachyon cases (Parker, 1969; Antippa, 1972; Mignani 
& Recami, 1973) if the -re sign is omitted. Recall that m is a rest-mass inN, 
whereas m'l and m' (belonging to N') can be related to each other, independent 
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of the transformation (2.3), by the familiar (subluminal, v < c) Einstein mass- 
velocity result. That is, m] and m' are of the same sign. Since the mass m' 1 can 
be at rest with respect to its own inertial system N', which is superluminal 
to N, it follows that for the condition m'l = m' the mass m' is also at rest 
with respect to N'.  Therefore the invariant operation such as m] ~ m' ~ - m  
in equation (2.3) demands that the plus sign (+) in equation (2.14) should 
not be included. (Notice that such a guided choice of  the sign remains un- 
clear for tachyons (Parker, t969; Antippa, 1972; Mignani & Recami, 1973) 
where the plus sign in the mass-velocity relation is chosen from a priori 
postulate.) Thus we see that the equation 

m'l = - i m [ 1  - (v2/c2)] -1/2,  v > c  (2.15) 

gives the required condition, m' 1 = m' -+ - m  for v = (2)1/2c, confirming the 
consistency of the transformation (2.3). Besides, this implication is also 
justified from another point of view that two identically equal masses should 
remain at rest with respect to each other-a  result already known from the 
Einstein mass-velocity relation. For a +re sign in equation (2.14) neither this 
inference can be drawn nor the Dirac equation can be made invariant in our 
non-trivial formalism. Besides, the -re sign in equation (2.15) also provides 
a firm basis for distinguishing an equal-valued set of energies and masses 

t r ml,  m and m (for velocity v = 0 and v = (2)1/2c respectively) through a 
probable form of--- symmetry in the gravitational interaction (see footnote, 
p. 192). This amounts to saying that the gravitational force between m' and 
m is -ve (repulsive) in contrast to a +ve effect (attraction) among the same 
type m'- or m-particles. Although the above results could offend the tradi- 
tional way of thinking, none of the physical principles is violated nor is 
there any justification in ignoring this new information. 

3. Conclusion 

In summary, using the first-order field equation t we have shown that sym- 
metry principles which are Dirac- and Lorentz-invariant through equations 
(2.2), (2.3), and (2.11)-(2.15) lead to some interesting physics. A negative- 
mass-in-effect particle (referred to here as 'bisiston') emerges to be a valid 
candidate for our universe in the large. A m'-bisiston of charge e should move 
faster than the speed of light and be capable of mass-repulsion ( - G I )  and 
annihilation with respect to its pair-particle (i.e., the m-electron of the same 
charge e). A similar positron-bisiston pair may behave in the same way. The 
question now is to ask: Will such particles (bisistons) ever be discovered? 
Where and how should we look for them? While it remains for the future to 
answer decisively on this issue, in our pursuit of scientific knowledge it is 

Compare with the second-order approach for tachyons (e.g. see Dhar & Sudarshan, 
1968). 
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worthwhile including them in the list of searchable particles. The searching 
problem, however, does not appear to be as simple as the usual techniques of 
pair-particle production. Possibly, more sophisticated mechanisms and devices 
are required. In a subsequent paper we shall discuss a few search-proposals (for 
bisistons) which are currently in progress. 

We conclude with the remark that gravitational symmetry (i.e., + G/) is 
most likely to be of the rarest kind, hardly realisable in our laboratory (none 
so far), though very much probable in the wide universe. And our philosophy 
is comparable to that of  tachyons for further exploitation. 

Note added in proof." After submission of this paper the author's attention was drawn 
to a possible question regarding a difference between the above referred bisiston and the 
jugmon of a previous paper (Sinha, 1973). Indeed, bisistons and jugmons are the same 
particles with different names as recently shown (Sinha, 1974). 
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